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The Toms  effect  is  examined f rom the point of view of the v i scoe las t i c  p r o p e r t i e s  of solu-. 
t ions of p o l y m e r s .  I t  i s  shown that the magnitude of the reduction of r e s i s t ance  depends on 
the set  of the re laxat ion t imes  of the m a c r o m o l e c u l e s  and the sca les  of the turbulent  vor t i ces .  

Recent ly  invest igat ions have appea red  with a view to building a model  which would explain the r e -  
duction of the r e s i s t ance  when smal l  quanti t ies  of soluble p o l y m e r s  a r e  in t roduced into a turbulent  flow of 
liquid (Toms effect  [1]) and which conf i rmed  it quanti tat ively.  In the works  [2, 3] the T o m s  effect: i s  bound 
up with the influence of s eve ra l  p a r t i c l e s - a s s o c i a t e s ,  fo rmed  due to the immobi l iza t ion  of pa r t  of the so l -  
vent by molecu les  of p o l y m e r s ,  on the turbulence.  G. F. Kobets [4] examines  the flow of solution, contain-  
ing v e r y  s imple  lengthened p a r t i c l e s - d u m b - b e l l s ,  and in t roduces  the coeff icient  of dynamic anisot ropy of 
the v i scos i ty  of the solution in o rde r  to explain the phenomenon of reduction of r e s i s t ance .  The s e m i e m -  
p i r ica l  theory  of turbulence of weak solutions of po lymer s  is  p resen ted  in [5], in which a hypothesis  about 
the exis tence  of a un iversa l  re la t ionship  between the m a x i m u m  magnitude of reduction of r e s i s t ance  and a 
cer ta in  combinat ion of the concentrat ion of the po lymer  and i ts  mo lecu la r  weight is  s ta ted on the basis  of 
exper imenta l  data. In the work [6] i t  is  a s s u m e d  that  a cons iderable  pa r t  of the turbulent  energy  is  s to red  
in deformed  p o l y m e r  molecu les .  Fo r  quanti tat ive evaluation of the influence of po lymer  additions on the 
reduct ion of the r e s i s t ance  a re la t ionship  is  p roposed  between two d imens ionless  p a r a m e t e r s .  T r e a t m e n t  
of exper imenta l  data by using these  p a r a m e t e r s  enables  it  to be concluded that in the case  of the given 
Reynolds n u m b e r  and the fo rm of the sur face  surrounded by liquid there  is  a single re la t ionship  between 
the p a r a m e t e r s .  

I t  i s  known that  in solutions of p o l y m e r s  the v i scoe las t i c  p r o p e r t i e s  a r e  a l ready  obse rved  at smal l  
m e a s u r e d  concentra t ions ,  when the individual molecu les  or  pa r t i c l e s  a re  kinet ical ly  independent of one 
another  [7]. In the p r e s e n c e  of v i scoe las t ic i ty ,  a complex v i scos i ty  7 ,  =71 + J72 is  in t roduced into the ex-  
amination,  where  the magnitude 71 i s  a s soc ia t ed  with the energy  sca t t e r ed  in the fo rm of heat ,  and 72 is  
a s soc ia t ed  with the accumulat ion of ene rgy  and i ts  l iberat ion during the deformat ion p r o c e s s .  

When the kinet ics  of the m a c r o m o l e c u l e s  in the solution a r e  examined by the authors  of [8], a model  
of a mac romolecu l e ,  consis t ing of N segments ,  subjected to the Brownian movemen t  is  introduced.  As a 
r e s u l t  of the fac t  that  although the segments  can ro ta te  one re la t ive  to the other ,  they a r e  connected among 
themse lves ,  and the movemen t  of each of them is  de te rmined  by all N segments  of the mo lecu l a r  chain. 
Rouse [9] ealcuIated this coopera t ive  type of movemen t  and showed that  the v i scos i ty  of the solution de-  
pends on the se t  of the re laxat ion  t imes  of the m a c r o m o l e c u l e s  kp and the f requency of the outside d i s tu rb-  
ing influence w. The distribution of the relaxation times is introduced on the strength of the fact that the 
molecule consists of N segments. Each segment introduces a certain discrete contribution into the spec- 
trum of relaxation, which is limited as a result of the fact that the molecule has N segments. The relax- 
ation times are associated with the equation kp=kl/p 2, where Xp is the p-e time of relaxation of the mac- 
romolecule, •i is the first (limiting)relaxation time, p is the number of segments in the molecular chain. 
On examining the macroscopic properties of the solution the most important parameter is the relaxation 
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t ime for the f i rs t  (slowest) mechanism or the "lin~At t ime of relaxation, n Xl, which can be determined ac -  
cording to the formula [101 

6 M 

Here M is the molecular  weight of the polymer,  ~/0 is the v iscos i ty  of the solvent, [~?0] is the cha r ac -  
ter is t ic  v iscos i ty  for a steady flow in the case of small  gradients of medium velocity for a steady flow in 
the case of small  gradients of medium velocity, R is the universal  gas constant, T is the temperature .  

F rom the Rouse theory  for  the charac te r i s t i c  v iscos i ty  [~/]2 it follows: 

N 

[~12 = 0.608 [~110 ~_, cokl p~ + ~1~ (0.1) 
p,-1 

The formula (0.1) gives a maximum where ~X~ ~ 1, and hence the grea tes t  quantity of energy is ac -  
cumulated in the macromolecule .  With inc rease  of the number of segments  p, which corresponds  to in- 
c rease  of the set of relaxation t imes,  the magnitude of the charac te r i s t i c  v iscos i ty  increases .  Hence the 
presence  of a viscoelast ic  p roper ty  in the solutions of po lymers  is associa ted  with the p resence  of differ-  
ent types of movement  of fIexible maeromolecules .  For  the varying s t r e s ses ,  the quantity of potential 
(accumulated) energy depends on to what extent the Brownian movement is associa ted  with the varying ex- 
ternal  forces .  

1. In the turbulent flow there  are  dis turbances with a continuous spec t rum of f requencies  [11]. Con- 
sequently, it is possible to imagine a turbulent movement  in the form of a set  of Four i e r  components,  and 
it is possible to use for its examination the expression (0.1) obtained by Rouse , for  dis turbances of a pc-  
riodic nature.  

We will assume that the absorption of energy of high frequency pulsations is associa ted  mainly with 
the accumulation of energy in the maeromoleeules .  The energy is accumulated in the individual m a c r o -  
molecule in the case of elast ic deformation, and then it is  obviously dissipated into heat or  it is radiated 
owing to the formation of displacement waves in the liquid. We will therefore  examine the v iscos i ty  IV]2, 
which determines  the extent of accumulation of Mastic energy in the maeromolecule .  Moreover ,  taking 
into account that in the turbulent flow in the case of high Reynolds numbers  the maeromolecule  of the poly-  
m e t  can in teract  with the turbulent dis turbances of different frequencies,  for the charac te r i s t i c  v iscos i ty  
[712 we will write 

N 

(~ ( i . i )  [nh = 0.608 tnloY, Y, p., +~%~? 
o~ k p~l 

where the summing is ca r r i ed  out over the region of frequencies w k of the external dis turbances ~4th 
which the macromolecule  in terac ts .  

The pure solvent has a v iscos i ty  ~/0, and the viscoelast ic  po lymer  introduces an additional contr ibu-  
By using expression [12] for  the v iscos i ty  of s t rongly diluted solutions of po lymers ,  it is possible to t i o n .  

write 

n~ = no ( i  + c [nh )  (1 .2 )  

From (1.2), taking into account (1.1), it is  seen that the v iscos i ty  ~72 depends on the concentration of 
the po lymer  c, the l imiting relaxation t ime Xl, the nttmber of segments  p, and the region of f requencies  of 
the external disturbing field w k. 

We will examine a turbulent flow with a la tera l  displacement.  Under the influence of the gradient of 
the average velocity the macromolecules  will be orientated by the major  axis in the direction of the flow. 
However, in every  real  liquid the predominant orientation crea ted  by the flow is weakened by the thermal  
movement  of the par t ic les .  Under the influence of these factors  in the flow a cer tain more  probable angle 
of orientation is established between the direction of the flow and the ma jo r  axis of the macromolecule  [12]. 
As a resul t  of the predominant orientation of the macromolecu les  in the flow, an uneven absorption of the 
turbulent energy along different direct ions takes place. The v iscos i ty  U2 will then be different according 
to the different directions in the solution of the polymer .  
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Since the flow of liquid around the wall in a rectangular system of coordinates will be examined, then 

for further flow it is convenient to introduce the viscosity of the solution in two directions into the examin- 

ation: the coefficient of viscosity 721 in the direction of the flow and the coefficient 722 in the perpendic- 
ular direction. The relationship A = 722/721 will be known as the coefficient of anisotropy of the dynamic 
viscosity. 

We note that as a result of the almost isotropic nature of the movement of the small scale vortices 
(at least in the case of large Reynolds numbers) complete absorption of energy by the macromolecule will 
not depend on the angle of orientation ~, but will be determined by its molecular properties, at the same 
time that the absorption of energy in the longitudinal and lateral directions is proportional to sin2~ and cos 2 

respectively. Then for the viscosities 721, 722 it is possible to write 

~]~1 ---- ~10 (1 ~-  c [~112 sin2 (P), ~12~ = ~]0 (t  -t- c [~l]~ cos~ ~) ( 1 . 3 )  

In the case of large Reynolds numbers ,  the angle of the predominant  orientation ~ 0  and the coef-  
ficient of anisotropy of the dynamic viscos i ty  assumes  the form 

A0 = (n~ I ~i)~=0 = I + c [nl~ (1.4) 

It is  seen that for each p-th t ime of relaxation of the macromolecule  (or natural  frequency) there is 
an outside disturbing influence of the frequency w =pk1-1, which is more  intensively absorbed by the m a c r o -  
molecule.  Hence the maximum absorption of the turbulent energy takes place for a limiting time of r e -  
laxation Xl" The upper l imit  of the frequencies  of the turbulent disturbances w2, with which the flexible 
macromolecule  in terac ts ,  is determined by the dimensions of the minimum (dissipated) vor t ices ,  which 
are  presen t  in the flow; the lower limit of frequencies r cor responds  to the limiting t ime of relaxation kl- 
Then for the coefficient of anisotropy of the dynamic viscos i ty  (1.4), taking into account (1.1), we will ob- 
tain the express ion 

A 0 = t +0.608c [~l]0 p +  ~ (1.5) 

On the basis of tile above, we will assume that in a turbulent flow a resonance absorption of the tu r -  
bulent energy  by the macromolecules  of the po lymers  takes place. With increase  of the set (spectrum) of 
the relaxation t imes  (which cor responds  to an increase  of the number  of segments p of the macromolecule) ,  
and also with inc rease  of the region of overlapping frequencies wl-w 2 the absorption of energy by the mac-  
romolecules  increases .  In other words,  a large par t  of the turbulent spectrum is subjected to the damping 
influence of the macromolecules ,  as a resul t  of which a s t ronger  anisotropy of v iscos i ty  occurs  in the flow. 
If the frequency of the turbulent dis turbances is less  than the natural frequencies of the macromolecule  
w <p~1-1, then a significant absorption of energy of these disturbances does not take place, and the coeffi-  
cient of anisotropy A = 1. Hence the effect of reduction of the hydrodynamic res is tance  also does not take 
place. For  a manifestation of the effect it is  neces sa ry  that the maximum frequency of the turbulent d is -  
turbance is g rea te r  than the f i rs t  natural f requency  of the macromolecule  determined by the limiting t ime 
of relaxation ~1- Consequently, the macromolecules  in terac t  only with the small  turbulent vor t ices ,  damp- 
ing the pulsations in the thin layer  around the wall, which includes the viscous sublayer  and the transit ion 
region. In the case of removal  along the normal  f rom the wall, the rate of the dissipative vor t ices  is in-  
creased,  and at a certain distance f rom the wall the interaction of the macromolecule  with the vor t ices  
ceases ,  and hence w <pX1-1. Experiments  with solutions of po lymers  actually showed that in the core of 
the flow the profi le of the average speed remains  logari thmic [13], and the intensity of the turbulent pulsa-  
tions is the same as in a pure solvent [14]. 

2. When examining the movement  of the liquid around a solid wall, we will use a two layer  system, 
in accordance  with which the flow is divided into two regions:  a thin region of purely  viscous movement  
near  the wall (viscous sublayer) and a region which does not depend on the viscosi ty  of the fully turbulent 
movement  (turbulent core  of the flow [15]). 

We will examine the flow in the Viscous sublayer.  In the case  of Newtonian liquid (solvent) t h e m o v e -  
ment in the viscous sublayer  is cha rac te r i zed  by the magnitudes of the frict ion s t r e s se s  on the wall T 0 and 
the physical  proper t ies  of the liquid: the v iscos i ty  70 and the density P0- By using the theory  of dimensions, 
it is possible to obtain an expression for the thickness of the viscous sublayer,  

5o vo ( 2 . 1 )  
= ~i "V % / Po 
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t] 

2g 

r 
-U-~o /~ . ~  

F i g .  1 

where ~0 is the kinematic viscosity, % is a certain dimensionless constant. 

Experiments with Newtonian liquids show that %= 11.6. 

In the case of movement of a weak solution of polymer we have the fol- 

lowing determining parameters: ~I is the friction stress on the wall; v 2 and 

Yl are the kinematic viscosities in the lateral and longitudinal directions; Pl is 
the density of the solution. It is possible to obtain by a method of dimensions 

the expression for the thickness of the viscous sublayer in the solution 

~1 V2 

We assign the s implest  form of the function 

" 

Moreover ,  taking into account that for  weak solutions of po lymers  and in the case of high Reynolds 
numbers  T 0= ~'1 and v 1 = v0, we will obtain for the relationship of the thicknesses  of the viscous sublayer  
in the solution and the solvent 

6~ _ a2 m ~'~ Ao ( 2 , 4 )  

In the same way as the work [4] we will a l low that % = % .  Then for  the thickness of the viscous sub- 
layer  in the solutions it can be written 

coz N 

 1=(1 +o6osct lo (2.2) 

It is  seen that in the case of high Reynolds numbers  the thickness of the viscous sublayer  in the so-  
lution of polymer  increases  A 0 t imes in compar ison with the solvent. 

Using the relationship (2.5) it is possible to obtain the profile of the average veloci ty in the solution 
of po lymer  in the case of high Reynolds numbers .  We will examine a plane turbulent flow in the absence 
of a longitudinal p r e s su re  gradient.  Then the equation which descr ibes  the movement  of a weak po lymer  
solution will have the following form: 

d2u dTii 
~l~-~ ~--h~y = 0 (2.6) 

where ~?1 is the viscosi ty  of the solution in the direction of movement  of the liquid, ~- l l=-p(u 'v '>  is  the tu r -  
bulent s t ress ,  y is lateral  to the direction of movement  of the coordinate.  

In the case of high Reynolds numbers  the po lymer  molecules  are oriented according to the flow and 
for qualitative calculations it is  possible to assume that ~?l=~?0 . Then, by integrat ing equation (2.6) and 
using the condition Tll = 0 on the wall, we will write 

du du 
~ 0 " ~ - ~  TI1 : "~1, "~1 = n0 (~y)11= 0 (2.7) 

In the region which is at a distance f rom the wall, the t e r m  ~/0du/dy is small  in compar ison with the 
turbulent friction Tll, and equation (2.7) assumes  the form 

T11 = 1:1 ( 2 . 8 )  

In the above-mentioned region, the derivative du/dy is small,  and the generation of turbulent pulsa-  
tions is very  slight, which leads to the formation of only large vor t ices  of low intensity. The grea tes t  f r e -  
quency of pulsations in this region is less than the natural  frequencies of the maeromolecules ,  and as a r e -  
sult of this interaction of the macromolecu les  with the turbulent field does not take place. I t  is  therefore  
possible to consider  that the intensity of the pulsations of the velocity and correspondingly the mixing length 
l in this region is the same as in the pure solvent. This means that the s t r e s s e s  of the turbulent friction 
and the solution and the solvent will also be ~-11 = ~'01- Then, using the Prandt l  formula of turbulent friction 
[11] and integrat ing the equation (2.8), we will obtain 

u = ~- l ny + C (2.9) 
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The constant  C can be de te rmined  by using the express ion  (2.5) for  the th ickness  of a viscous  sub-  
l ayer  in the solution, s i m i l a r  to the conclusion [15]: 

C=u,(alAo---~lnalAo)-- i---u, ln ~~ (2.10) 

Here  u ,  = T0~/O 0 i s  the dynamic ve loc i ty  and n is  the universa l  constant.  Substituting the value of the 
constant  into (2.9) and taking into account that  in the case  of high Reynolds numbers  ~-1=70, we will obtain 
a veloci ty  prof i le  in the po l ym er  solution: 

It ~ in ~oy + ~ , A  ~ t It--:- : -- -~- In o~lA o 

o r  

where 

(2.11) 

u = 2.5 In -~oY + B (2.12)  
I t ,  

~2 N o2 N 

Figure  1 shows the r e su l t s  of calculat ion according to the fo rmula  (2.11) for  different  values  of the 
coefficient  of anisot ropy.  In formula  (2.12) B = 5.5 co r responds  to the case  A0= 1. I t  i s  seen that with.the 
i n c r e a s e  of the coeff icient  A 0 d i sp lacement  of the logar i thmic  veloci ty  prof i le  t akes  place,  i .e . ,  an i n c r ea se  
of the d i scharge  velocity.  

We will again note fac to r s  which influence the magnitude of the coeff icient  of an iso t ropy  and, c o r -  
respondingly,  the reduction of the r e s i s t ance .  F i r s t ly ,  the i nc r ea se  of the set  of the re laxat ion t imes  of 
the m a c r o m o l e e u l e s  will lead to i nc rea se  of the coefficient  A; secondly, i nc r ea se  of the Reynolds number  
leads to d e c r e a s e  of the d iss ipat ive  vo r t i ces  in the flow and expansion of the region of the over lapping f r e -  
quencies 0)i-0J2, which a lso  leads to i n c r e a s e  of the coeff icient  of anisotropy.  

The express ion  (1.5) for  the coefficient  of an iso t ropy  not only qual i ta t ively re f lec t s  the interact ion of 
the m a c r o m o l e c u l e s  with the turbulent  field, but also yields quanti tat ive magni tudes cor responding  with con-  
centra t ion c =3 �9 10 -4 g / c m  3, the magnitude of the complex c iV]0 ~ 1. I f  it is  a s sumed  that the g r ea t e s t  f r e -  
quencies  of the turbulent  d i s turbances  % ~ 9hi - i ,  i .e . ,  the f requencies  of the d iss ipat ive  vo r t i ce s  co r respond  
to the th i rd  t ime  of re laxat ion,  then for  the coefficient  of anisot ropy we will obtain A0=2.3. In the case  of 
this coefficient  the d ischarge  veloci ty  is  i n c r e a s e d  1.6 t imes ,  which co r re sponds  well  with the exper iments .  

In conclusion it  mus t  be noted that  the express ion  for  the coeff icient  of anisot ropy will be accura te  
a lso  in the case  when the agglomera t ion  of pa r t i c l e s  takes  place in the solution. Hence the t imes  of r e -  
laxation of the en la rged  p a r t i c l e s - - a s s o c i a t e s  which a r e  forming  will be in t roduced into the formula  for  
the coefficient .  
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