INFLUENCE OF THE ELASTICITY OF POLYMER
SOLUTIONS ON THE REDUCTION OF RESISTANCE
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The Toms effect is examined from the point of view of the viscoelastic properties of solu-
tions of polymers. Itis shown that the magnitude of the reduction of resistance depends on
the set of the relaxation times of the macromolecules and the scales of the turbulent vortices.

Recently investigations have appeared with a view to building a model which would explain the re-
duction of the resistance when small quantities of soluble polymers are introduced into a turbulent flow of
liquid (Toms effect [1]) and which confirmed it quantitatively. In the works [2, 3] the Toms effect is bound
up with the influence of several particles—associates, formed due to the immobilization of part of the sol-
vent by molecules of polymers, on the turbulence. G. F. Kobets [4] examines the flow of solution, contain-
ing very simple lengthened particles —dumb-bells, and introduces the coefficient of dynamic anisotropy of
the viscosity of the solution in order to explain the phenomenon of reduction of resistance. The semiem-
pirical theory of turbulence of weak solutions of polymers is presented in [5], in which a hypothesis about
the existence of a universal relationship between the maximum magnitude of reduction of resistance and a
certain combination of the concentration of the polymer and its molecular weight is stated on the basis of
experimental data. In the work [6] it is assumed that a considerable part of the turbulent energy is stored
in deformed polymer molecules. For quantitative evaluation of the influence of polymer additions on the
reduction of the resistance a relationship is proposed between two dimensionless parameters. Treatment
of experimental data by using these parameters enables it to be concluded that in the case of the given
Reynolds number and the form of the surface surrounded by liquid there is a single relationship between
the parameters.

It is known that in solutions of polymers the viscoelastic properties are already observed at small
measured concentrations, when the individual molecules or particles are kinetically independent of one
another [7]. In the presence of viscoelasticity, 2 complex viscosity n,=m,+ jn, is introduced into the ex-
amination, where the magnitude 71, is associated with the energy scattered in the form of heat, and n, is
associated with the accumulation of energy and its liberation during the deformation process.

When the kinetics of the macromolecules in the solution are examined by the authors of [8], a model
of a macromolecule, consisting of N segments, subjected to the Brownian movement is introduced. As a
result of the fact that although the segments can rotate one relative to the other, they are connected among
themselves, and the movement of each of them is determined by all N segments of the molecular chain.
Rouse [9] calculated this cooperative type of movement and showed that the viscosity of the solution de-
pends on the set of the relaxation times of the macromolecules Ap and the frequency of the outside disturb-
ing influence w. The distribution of the relaxation times is introduced on the strength of the fact that the
molecule consists of N segments. Each segment introduces a certain discrete contribution into the spec-
trum of relaxation, which is limited as a result of the fact that the molecule has N segments. The relax-
ation times are associated with the equation xp=7\1/ pz, where Ap is the p-e time of relaxation of the mac~
romolecule, j; is the first (limiting) relaxation time, p is the number of segments in the molecular chain.
On examining the macroscopic properties of the solution the most important parameter is the relaxation
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time for the first (slowest) mechanism or the "limit time of relaxation,™ A4, which can be determined ac-
cording to the formula [10]

6
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Here M is the molecular weight of the polymer, 7 is the viscosity of the solvent, [n,] is the charac-
teristic viscosity for a steady flow in the case of small gradients of medium velocity for a steady flow in
the case of small gradients of medium velocity, R is the universal gas constant, T is the temperature.

From the Rouse theory for the characteristic viscosity [n], it follows:

N
= 0.608 Ok
[71]2 [TI]O pgl Pz + 0h2 (0-1)

The formula (0.1) gives a maximum where wj;~ 1, and hence the greatest quantity of energy is ac-
cumulated in the macromolecule. With increase of the number of segments p, which corresponds fo in-
crease of the set of relaxation times, the magnitude of the characteristic viscosity increases. Hence the
presence of a viscoelastic property in the solutions of polymers is associated with the presence of differ-
ent types of movement of flexible macromolecules. For the varying stresses, the quantity of potential
(accumulated) energy depends on to what extent the Brownian movement is associated with the varying ex-
ternal forces.

1. In the turbulent flow there are disturbances with a continuous spectrum of frequencies [11]. Con-
sequently, it is possible to imagine a turbulent movement in the form of a set of Fourier components, and
it is possible to use for its examination the expression (0.1) obtained by Rouse,for disturbances of a pe-
riodic nature.

We will assume that the absorption of energy of high frequency pulsations is associated mainly with
the accumulation of energy in the macromolecules. The energy is accumulated in the individual macro-
molecule in the case of elastic deformation, and then it is obviously dissipated into heat or it is radiated
owing to the formation of displacement waves in the liquid. We will therefore examine the viscosity [nl,,
which determines the extent of accumulation of elastic energy in the macromolecule. Moreover, taking
into account that in the turbulent flow in the case of high Reynolds numbers the macromolecule of the poly-
mer can interact with the turbulent disturbances of different frequencies, for the characteristic viscosity
[n]y we will write

y ATy
[n]s = 0.608 [}y 2 X Hritos (1.1)
@y Pp=1 k71
where the summing is carried out over the region of frequencies wy of the external disturbances with
which the macromolecule interacts.

The pure solvent has a viscosity 7y, and the viscoelastic polymer introduces an additional contribu~
tion. By using expression [12] for the viscosity of strongly diluted solutions of polymers, it is possible to
write

Ny = Mo (1 + ¢ Inly) (1.2)

From (1.2), taking into account (1.1), it is seen that the viscosity 7y depends on the concentration of
the polymer ¢, the limiting relaxation time A, the number of segments p, and the region of frequencies of
the external disturbing field wk.

We will examine a turbulent flow with a lateral displacement. Under the influence of the gradient of
the average velocity the macromolecules will be orientated by the major axis in the direction of the flow.
However, in every real liquid the predominant orientation created by the flow is weakened by the thermal
movement of the particles. Under the influence of these factors in the flow a certain more probable angle
of orientation is established between the direction of the flow and the major axis of the macromolecule {12].
As a result of the predominant orientation of the macromolecules in the flow, an uneven absorption of the
turbulent energy along different directions takes place. The viscosity 1, will then be different according
to the different directions in the solution of the polymer.
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Since the flow of liquid around the wall in a rectangular system of coordinates will be examined, then
for further flow it is convenient to introduce the viscosity of the solution in two directions into the examin-
ation: the coefficient of viscosity 7y, in the direction of the flow and the coefficient 7y, in the perpendic-
ular direction. The relationship A =1y,/ny; will be known as the coefficient of anisotropy of the dynamic
viscosity.

We note that as a result of the almost isotropic nature of the movement of the small scale vortices
(at least in the case of large Reynolds numbers) complete absorption of energy by the macromolecule will
not depend on the angle of orientation ¢, but will be determined by its molecular properties, at the same
time that the absorption of energy in the longitudinal and lateral directions is proportional to sin® ¢ and cos?
¢ respectively. Then for the viscosities 1,4, 7y it is possible to write

Tex = Mo (1 + ¢ [nlysin® @), Mg = Mo (1 + ¢ [1]; cos? ¢) (1.3)

In the case of large Reynolds numbers, the angle of the predominant orientation ¢p~0 and the coef~
ficient of anisotropy of the dynamic viscosity assumes the form

Ay = (Mag /Mar)yy = 1 + ¢ [, (1.4)

It is seen that for each p-th time of relaxation of the macromolecule (or natural frequency) there is
an outside disturbing influence of the frequency w=px;~!, which is more intensively absorbed by the macro-
molecule. Hence the maximum absorption of the turbulent energy takes place for a limiting time of re-~
laxation A;. The upper limit of the frequencies of the turbulent disturbances w,, with which the flexible
macromolecule interacts, is determined by the dimensions of the minimum (dissipated) vortices, which
are present in the flow; the lower limit of frequencies w; corresponds to the limiting time of relaxation A;.
Then for the coefficient of anisotropy of the dynamic viscosity (1.4), taking into account (1.1), we will ob-
tain the expression

w; N
Ay =1-10.608¢ [njog E_ﬁ% (1.5)

On the basis of the above, we will assume that in a turbulent flow a resonance absorption of the tur-
bulent energy by the macromolecules of the polymers takes place. With increase of the set (spectrum) of
the relaxation times (which corresponds to an increase of the number of segments p of the macromolecule),
and also with increase of the region of overlapping frequencies wy~wy the absorption of energy by the mac-
romolecules increases. In other words, a large part of the turbulent spectrum is subjected to the damping
influence of the macromolecules, as a result of which a stronger anisotropy of viscosity occurs in the flow.
If the frequency of the turbulent disturbances is less than the natural frequencies of the macromolecule
w <ph1—1, then a significant absorption of energy of these disturbances does not take place, and the coeffi~
cient of anisotropy A=1. Hence the effect of reduction of the hydrodynamic resistance also does not take
place. For a manifestation of the effect it is necessary that the maximum frequency of the turbulent dis-
turbance is greater than the first natural frequency of the macromolecule determined by the limiting time
of relaxation ;. Consequenfly, the macromolecules interact only with the small turbulent vortices, damp-
ing the pulsations in the thin layer around the wall, which includes the viscous sublayer and the transition
region. In the case of removal along the normal from the wall, the rate of the dissipative vortices is in-
creased, and at a certain distance from the wall the interaction of the macromolecule with the vortices
ceases, and hence w <p}\1'1. Experiments with solutions of polymers actually showed that in the core of
the flow the profile of the average speed remains logarithmic [13], and the intensity of the turbulent pulsa-
tions is the same as in a pure solvent [14].

2. When examining the movement of the liquid around a solid wall, we will use a two layer system,
in accordance with which the flow is divided into two regions: a thin region of purely viscous movement
near the wall (viscous sublayer) and a region which does not depend on the viscosity of the fully turbulent
movement (turbulent eore of the flow [15]).

We will examine the flow in the viscous sublayer. In the case of Newtonian liquid (solvent) the move~
ment in the viscous sublayer is characterized by the magnitudes of the friction stresses on the wall Ty and
the physical properties of the liquid: the viscosity 1, and the density p,. By using the theory of dimensions
it is possible to obtain an expression for the thickness of the viscous sublayer,

H

—, Y0
B0 =% Vi /r 2.1
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g where yy is the kinematic viscosity, ¢, is a certain dimensionless constant.
* Experiments with Newtonian liquids show that a;=11.6.
P, In the case of movement of a weak solution of polymer we have the fol-
lowing determining parameters: Ty is the friction stress on the wall; vy and
N v; are the kinematic viscosities in the lateral and longitudinal directions; p, is
the density of the solution. It is possible to obtain by a method of dimensions
w the expression for the thickness of the viscous sublayer in the solution
8y = oy g (32 .
' 2]/'l'l/Plf(VI) 2.2)
Gy
2} /0 /] s We assign the simplest form of the function
Fig. 1 f2)=2 (2.3)

Moreover, taking into account that for weak solutions of polymers and in the case of high Reynolds
numbers Tp=7; and ¥y = V,, we will obtain for the relationship of the thicknesses of the viscous sublayer
in the solution and the solvent

&1 Ca V2 24

== =24, (2.4)

o1 Vo o1

In the same way as the work [4] we will allow that ¢y=a,. Then for the thickness of the viscous sub-
layer in the solutions it can be written

w, N
8y = (1+0.608¢[n), ) Zﬁ‘i’%)m (2.5)

w=uw; p=1

It is seen that in the case of high Reynolds numbers the thickness of the viscous sublayer in the so-
lution of polymer increases A  times in comparison with the solvent.

Using the relationship (2.5) it is possible to obtain the profile of the average velocity in the solution
of polymer in the case of high Reynolds numbers. We will examine a plane turbulent flow in the absence
of a longitudinal pressure gradient. Then the equation which describes the movement of a weak polymer
solution will have the following form:

- d
ns + g =0 (2.6)

where 7, is the viscosity of the solution in the direction of movement of the liquid, 74;==p(u'v") is the tur-
bulent stress, y is lateral to the direction of movement of the coordinate.

In the case of high Reynolds numbers the polymer molecules are oriented according to the flow and
for qualitative calculations it is possible to assume that n;=n,. Then, by integrating equation (2.6) and
using the condition 74;=0 on the wall, we will write

d d
'ﬂod—z FTTu="1, =" (%)y=o (2.7

In the region which is at a distance from the wall, the term nydu/dy is small in comparison with the
turbulent friction Ty, and equation (2.7) assumes the form

Ty =T ‘ (2.8)

In the above-mentioned region, the derivative du/dy is small, and the generation of turbulent pulsa-
tions is very slight, which leads to the formation of only large vortices of low intensity. The greatest fre~
quency of pulsations in this region is less than the natural frequencies of the macromolecules, and as a re-
sult of this interaction of the macromolecules with the turbulent field does not take place. It is therefore
possible to consider that the intensity of the pulsations of the velocity and correspondingly the mixinglength
[ in this region is the same as in the pure solvent. This means that the stresses of the turbulent friction
and the solution and the solvent will also be T;;=Ty;. Then, using the Prandtl formula of turbulent friction
[11] and integrating the equation (2.8), we will obtain

w=1 —;inl_n.y-i— C (2.9)

%
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The constant C can be determined by using the expression (2.5) for the thickness of a viscous sub-
layer in the solution, similar to the conclusion [15]:
1 1
€ = uy (214 — —Inoydy) — —u,, I (2.10)
Here u, =VTy/p, is the dynamic velocity and w is the universal constant. Substituting the value of the
constant into (2.9) and taking into account that in the case of high Reynolds numbers 1;=T;, we will obtain
a velocity profile in the polymer solution:

u

L

u

1.
<Y faydy — - lney 4, (2.11)

=iln
kg

or

Y =25 1n“v_'.f’+B (2.12)

Uy

where

o N [N N
B=11.6(1+0608cnl, X D P—,:—_’%m)-—zs 1n|:11.6<1+0.608c[n](, » Ep—sz;;ﬁ)]

w=e; p=1 W=, p==1

Figure 1 shows the results of calculation according to the formula (2.11) for different values of the
coefficient of anisotropy. In formula (2.12) B=5.5 corresponds to the case Ay=1. It is seen that with,the
increase of the coefficient A, displacement of the logarithmic velocity profile takes place, i.e., an increase
of the discharge velocity.

We will again note factors which influence the magnitude of the coefficient of anisotropy and, cor-
respondingly, the reduction of the resistance. Firstly, the increase of the set of the relaxafion times of
the macromolecules will lead to increase of the coefficient A; secondly, increase of the Reynolds number
leads to decrease of the dissipative vortices in the flow and expansion of the region of the overlapping fre-
quencies wy-w,, Which also leads to increase of the coefficient of anisotropy.

The expression (1.5) for the coefficient of anisotropy not only qualitatively reflects the interaction of
the macromolecules with the turbulent field, but also yields quantitative magnitudes corresponding with con-
centration ¢c=3-10~* g/cm3, the magnitude of the complex ¢ [n]y~ 1. If it is assumed that the greatest fre-
quencies of the turbulent disturbances «, = 9A1‘1, i.e., the frequencies of the dissipative vortices correspond
to the third time of relaxation, then for the coefficient of anisotropy we will obtain A;=2.3. In the case of
this coefficient the discharge velocity is increased 1.6 times, which corresponds well with the experiments.

In conclusion it must be noted that the expression for the coefficient of anisotropy will be accurate
also in the case when the agglomeration of particles takes place in the solution. Hence the times of re-
laxation of the enlarged particles—associates which are forming will be introduced into the formula for
the coefficient.
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